On graphs with small game domination number
نویسندگان
چکیده
The domination game is played on a graph G by Dominator and Staller. The two players are taking turns choosing a vertex from G such that at least one previously undominated vertex becomes dominated; the game ends when no move is possible. The game is called D-game when Dominator starts it, and S-game otherwise. Dominator wants to finish the game as fast as possible, while Staller wants to prolong it as much as possible. The game domination number γg(G) of G is the number of moves played in D-game when both players play optimally. Similarly, γ′ g(G) is the number of moves played in S-game. Graphs G with γg(G) = 2, graphs with γ ′ g(G) = 2, as well as graphs extremal with respect to the diameter among these graphs are characterized. In particular, γ′ g(G) = 2 and diam(G) = 3 hold for a graph G if and only if G is a so-called gamburger. Graphs G with γg(G) = 3 and diam(G) = 6, as well as graphs G with γ′ g(G) = 3 and diam(G) = 5 are also characterized. The latter can be described as the so-called double-gamburgers.
منابع مشابه
Paired-Domination Game Played in Graphs
In this paper, we continue the study of the domination game in graphs introduced by Bre{v{s}}ar, Klav{v{z}}ar, and Rall. We study the paired-domination version of the domination game which adds a matching dimension to the game. This game is played on a graph $G$ by two players, named Dominator and Pairer. They alternately take turns choosing vertices of $G$ such that each vertex chosen by Domin...
متن کاملSome Results on the Maximal 2-Rainbow Domination Number in Graphs
A 2-rainbow dominating function ( ) of a graph is a function from the vertex set to the set of all subsets of the set such that for any vertex with the condition is fulfilled, where is the open neighborhood of . A maximal 2-rainbow dominating function on a graph is a 2-rainbow dominating function such that the set is not a dominating set of . The weight of a maximal is the value . ...
متن کاملTotal Version of the Domination Game
In this paper, we continue the study of the domination game in graphs introduced by Brešar, Klavžar, and Rall [SIAM J. Discrete Math. 24 (2010) 979–991]. We study the total version of the domination game and show that these two versions differ significantly. We present a key lemma, known as the Total Continuation Principle, to compare the Dominator-start total domination game and the Staller-st...
متن کاملOn the super domination number of graphs
The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...
متن کاملSigned total Italian k-domination in graphs
Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G is a functionf : V (G) → {−1, 1, 2} satisfying the conditions that $sum_{xin N(v)}f(x)ge k$ for each vertex v ∈ V (G), where N(v) is the neighborhood of $v$, and each vertex u with f(u)=-1 is adjacent to a vertex v with f(v)=2 or to two vertic...
متن کامل